3 research outputs found

    Effect of Sophorolipid <i>n</i>‑Alkyl Ester Chain Length on Its Interfacial Properties at the Almond Oil–Water Interface

    No full text
    Sophorolipids (SLs), produced by <i>Candida bombicola</i>, are of interest as potential replacements for hazardous commercial surfactants. For the first time, a series of molecularly edited SLs with ethyl (EE), <i>n</i>-hexyl (HE), and <i>n</i>-decyl (DE) esters were evaluated at an oil (almond oil)–water interface for their ability to reduce interfacial tension (IFT) and generate stable emulsions. An increase in the <i>n</i>-alkyl ester chain length from ethyl to hexyl resulted in a maximum % decrease in the IFT from 86.1 to 95.3, respectively. Furthermore, the critical aggregation concentrations (CACs) decreased from 0.035 to 0.011 and 0.006 mg/mL as the ester chain length was increased from ethyl to <i>n</i>-hexyl and <i>n</i>-decyl, respectively. In contrast, the CAC of natural SL, composed of 50/50 acidic and LSL, is 0.142 mg/mL. Dynamic IFT analysis showed significant differences in diffusion coefficients for all SLs studied. Almond oil emulsions with up to 200:1 (by weight) oil/SL-DE were stable against oil separation for up to 1 week with average droplet sizes below 5 μm. Emulsions of almond oil with natural SLs showed consistent oil separation 24 h after emulsification. A unique connection between IFT and emulsification was found as SL-DE has both the lowest CAC and the best emulsification performance of all natural and modified SLs studied herein. This connection between CAC and emulsification may be generally applicable, providing a tool for the prediction of optimal surfactants in other oil–water interfacial applications

    Patterned Enzymatic Degradation of Poly(ε-caprolactone) by High-Affinity Microcontact Printing and Polymer Pen Lithography

    No full text
    This paper reports deposition of Candida antarctica Lipase B (CALB) on relatively thick poly­(ε-caprolactone) (PCL) films (300–500 nm) to create well-defined patterns using two different writing techniques: high-affinity microcontact (HA-μCL) and polymer pen (PPL) lithography. For both, an aqueous CALB ink is absorbed onto a polydimethylsiloxane (PDMS) writing implement (PDMS stamp or a PDMS pen tip), which is transferred to a spun-cast PCL film. HA-μCL experiments demonstrated the importance of applied pressure to obtain high-resolution patterns since uniform contact is needed between raised 20 μm parallel line regions of the PDMS stamp and the surface. AFM imaging shows pattern formation evolves gradually over incubation time only in areas stamped with CALB cutting through spherulites without apparent influence by grain boundaries. Strong binding of CALB to PCL is postulated as the mechanism by which lateral diffusion is limited. PPL enables formation of an arbitrary image by appropriate programming of the robot. The PDMS pen tips were coated with an aqueous CALB solution and then brought into contact with the PCL film to transfer CALB onto the surface. By repeating the ink transfer step multiple times where pen tips are brought into contact with the PCL film at a different locations, a pattern of dots is formed. After printing, patterns were developed at 37 °C and 95% RH. Over a 7-day period, CALB progressively etched the PCL down to the silicon wafer on which it was spun (350 nm) giving round holes with diameters about 10 μm. AFM images show the formation of steep PCL walls indicating CALB degraded the PCL film in areas to which it was applied. This work demonstrates that high-resolution patterns can be achieved without immobilizing the enzyme on the surface of polymeric stamps that limits the depth of features obtained as well as the throughput of the process

    Green and Efficient Synthesis of Dispersible Cellulose Nanocrystals in Biobased Polyesters for Engineering Applications

    No full text
    Despite attractive properties of cellulose nanocrystals (CNCs) such as high natural abundance, inherent biodegradability and high modulus, CNCs tend to degrade and aggregate when exposed to high temperatures during melt processing. In the present work, the surface of CNCs was modified with PMMA to take advantage of the miscibility with various biobased polymers including PLLA when melt-blended. Particular attention was paid to grafting techniques in water medium using two different redox initiators: Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> (Fenton’s reagent) and ceric ammonium nitrate (CAN). The successful synthesis of CNC-<i>g</i>-PMMA was verified by gravimetric analysis, FTIR, CP-MAS <sup>13</sup>C NMR and suspension tests. A high grafting efficiency of 77% was achieved using CAN as the redox initiator. Increasing the PMMA content on CNC surfaces led to higher CNC thermal stability. As a consequence of PMMA grafting in water, modified CNCs were found to be predispersed in a PMMA network. PLLA/CNC nanocomposites were then prepared by melt-blending, i.e., in the absence of solvent, and the quality of the dispersion was confirmed by dynamic rheology, TEM and DMA. The presence of a high amount of PMMA grafts on CNC surfaces reduced CNC aggregation and favors the percolation of CNCs with the development of a weak long-range 3D network. Miscibility between PMMA grafts and PLLA as well as the predispersion of CNCs was found to play a key role in the dispersion of CNCs in PLLA. Thermomechanical analysis revealed that PMMA grafts on CNC surfaces significantly enhanced elastic moduli in the glassy and rubbery state. The high dispersion state (related to high PMMA grafting) also showed a positive effect on O<sub>2</sub> permeability of PLLA and a strong beneficial effect on heat deflection temperature (HDT) reaching outstanding temperatures higher than 130 °C. Thus, free-radical grafting of PMMA in water provides an efficient and green route to dispersible (bio)­nanofillers by solvent-free extrusion techniques with PMMA-miscible matrices such as PLLA for high-performance applications
    corecore